581 research outputs found

    Control of electron spin and orbital resonance in quantum dots through spin-orbit interactions

    Get PDF
    Influence of resonant oscillating electromagnetic field on a single electron in coupled lateral quantum dots in the presence of phonon-induced relaxation and decoherence is investigated. Using symmetry arguments it is shown that spin and orbital resonance can be efficiently controlled by spin-orbit interactions. The control is possible due to the strong sensitivity of Rabi frequency to the dot configuration (orientation of the dot and a static magnetic field) as a result of the anisotropy of the spin-orbit interactions. The so called easy passage configuration is shown to be particularly suitable for magnetic manipulation of spin qubits, ensuring long spin relaxation time and protecting the spin qubit from electric field disturbances accompanying on-chip manipulations.Comment: 11 pages, 5 figures; v2: introduction and conclusions broadened, moderate structure and content change

    Fast Long-Distance Control of Spin Qubits by Photon Assisted Cotunneling

    Full text link
    We investigate theoretically the long-distance coupling and spin exchange in an array of quantum dot spin qubits in the presence of microwaves. We find that photon assisted cotunneling is boosted at resonances between photon and energies of virtually occupied excited states and show how to make it spin selective. We identify configurations that enable fast switching and spin echo sequences for efficient and non-local manipulation of spin qubits. We devise configurations in which the near-resonantly boosted cotunneling provides non-local coupling which, up to certain limit, does not diminish with distance between the manipulated dots before it decays weakly with inverse distance.Comment: 17 pages (including 8 pages of Appendices), 2 figure

    Orbital and spin relaxation in single and coupled quantum dots

    Get PDF
    Phonon-induced orbital and spin relaxation rates of single electron states in lateral single and double quantum dots are obtained numerically for realistic materials parameters. The rates are calculated as a function of magnetic field and interdot coupling, at various field and quantum dot orientations. It is found that orbital relaxation is due to deformation potential phonons at low magnetic fields, while piezoelectric phonons dominate the relaxation at high fields. Spin relaxation, which is dominated by piezoelectric phonons, in single quantum dots is highly anisotropic due to the interplay of the Bychkov-Rashba and Dresselhaus spin-orbit couplings. Orbital relaxation in double dots varies strongly with the interdot coupling due to the cyclotron effects on the tunneling energy. Spin relaxation in double dots has an additional anisotropy due to anisotropic spin hot spots which otherwise cause giant enhancement of the rate at useful magnetic fields and interdot couplings. Conditions for the absence of the spin hot spots in in-plane magnetic fields (easy passages) and perpendicular magnetic fields (weak passages) are formulated analytically for different growth directions of the underlying heterostructure. It is shown that easy passages disappear (spin hot spots reappear) if the double dot system loses symmetry by an xy-like perturbation.Comment: 13 pages, 9 figure

    Theory of Spin Relaxation in Two-Electron Lateral Coupled Si/SiGe Quantum Dots

    Get PDF
    Highly accurate numerical results of phonon-induced two-electron spin relaxation in silicon double quantum dots are presented. The relaxation, enabled by spin-orbit coupling and the nuclei of 29^{29}Si (natural or purified abundance), are investigated for experimentally relevant parameters, the interdot coupling, the magnetic field magnitude and orientation, and the detuning. We calculate relaxation rates for zero and finite temperatures (100 mK), concluding that our findings for zero temperature remain qualitatively valid also for 100 mK. We confirm the same anisotropic switch of the axis of prolonged spin lifetime with varying detuning as recently predicted in GaAs. Conditions for possibly hyperfine-dominated relaxation are much more stringent in Si than in GaAs. For experimentally relevant regimes, the spin-orbit coupling, although weak, is the dominant contribution, yielding anisotropic relaxation rates of at least two order of magnitude lower than in GaAs.Comment: 11 pages, 10 figure

    Spin properties of single electron states in coupled quantum dots

    Get PDF
    Spin properties of single electron states in laterally coupled quantum dots in the presence of a perpendicular magnetic field are studied by exact numerical diagonalization. Dresselhaus (linear and cubic) and Bychkov-Rashba spin-orbit couplings are included in a realistic model of confined dots based on GaAs. Group theoretical classification of quantum states with and without spin orbit coupling is provided. Spin-orbit effects on the g-factor are rather weak. It is shown that the frequency of coherent oscillations (tunneling amplitude) in coupled dots is largely unaffected by spin-orbit effects due to symmetry requirements. The leading contributions to the frequency involves the cubic term of the Dresselhaus coupling. Spin-orbit coupling in the presence of magnetic field leads to a spin-dependent tunneling amplitude, and thus to the possibility of spin to charge conversion, namely spatial separation of spin by coherent oscillations in a uniform magnetic field. It is also shown that spin hot spots exist in coupled GaAs dots already at moderate magnetic fields, and that spin hot spots at zero magnetic field are due to the cubic Dresselhaus term only.Comment: 16 pages, 12 figure

    A Role for Bottom-Up Synthetic Cells in the Internet of Bio-Nano Things?

    Get PDF
    he potential role of bottom-up Synthetic Cells (SCs) in the Internet of Bio-Nano Things (IoBNT) is discussed. In particular, this perspective paper focuses on the growing interest in networks of biological and/or artificial objects at the micro- and nanoscale (cells and subcellular parts, microelectrodes, microvessels, etc.), whereby communication takes place in an unconventional manner, i.e., via chemical signaling. The resulting “molecular communication” (MC) scenario paves the way to the development of innovative technologies that have the potential to impact biotechnology, nanomedicine, and related fields. The scenario that relies on the interconnection of natural and artificial entities is briefly introduced, highlighting how Synthetic Biology (SB) plays a central role. SB allows the construction of various types of SCs that can be designed, tailored, and programmed according to specific predefined requirements. In particular, “bottom-up” SCs are briefly described by commenting on the principles of their design and fabrication and their features (in particular, the capacity to exchange chemicals with other SCs or with natural biological cells). Although bottom-up SCs still have low complexity and thus basic functionalities, here, we introduce their potential role in the IoBNT. This perspective paper aims to stimulate interest in and discussion on the presented topics. The article also includes commentaries on MC, semantic information, minimal cognition, wetware neuromorphic engineering, and chemical social robotics, with the specific potential they can bring to the IoBNT

    Evaluation of NASA SPoRT's Pseudo-Geostationary Lightning Mapper Products in the 2011 Spring Program

    Get PDF
    NASA's Short-term Prediction Research and Transition (SPoRT) program is a contributing partner with the GOES-R Proving Ground (PG) preparing forecasters to understand and utilize the unique products that will be available in the GOES-R era. This presentation emphasizes SPoRT s actions to prepare the end user community for the Geostationary Lightning Mapper (GLM). This preparation is a collaborative effort with SPoRT's National Weather Service partners, the National Severe Storms Laboratory (NSSL), and the Hazardous Weather Testbed s Spring Program. SPoRT continues to use its effective paradigm of matching capabilities to forecast problems through collaborations with our end users and working with the developers at NSSL to create effective evaluations and visualizations. Furthermore, SPoRT continues to develop software plug-ins so that these products will be available to forecasters in their own decision support system, AWIPS and eventually AWIPS II. In 2009, the SPoRT program developed the original pseudo geostationary lightning mapper (PGLM) flash extent product to demonstrate what forecasters may see with GLM. The PGLM replaced the previous GLM product and serves as a stepping-stone until the AWG s official GLM proxy is ready. The PGLM algorithm is simple and can be applied to any ground-based total lightning network. For 2011, the PGLM used observations from four ground-based networks (North Alabama, Kennedy Space Center, Oklahoma, and Washington D.C.). While the PGLM is not a true proxy product, it is intended as a tool to train forecasters about total lightning as well as foster discussions on product visualizations and incorporating GLM-resolution data into forecast operations. The PGLM has been used in 2010 and 2011 and is likely to remain the primary lightning training tool for the GOES-R program for the near future. This presentation will emphasize the feedback received during the 2011 Spring Program. This will discuss several topics. Based on feedback from the 2010 Spring Program, SPoRT created two variant PGLM products, which NSSL produced locally and provided in real-time within AWIPS for 2011. The first is the flash initiation density (FID) product, which creates a gridded display showing the number of flashes that originated in each 8 8 km grid box. The second product is the maximum flash density (MFD). This shows the highest PGLM value for each grid point over a specific period of time, ranging from 30 to 120 minutes. In addition to the evaluation of these two new products, the evaluation of the PGLM itself will be covered. The presentation will conclude with forecaster feedback for additional improvements requested for future evaluations, such as within the 2012 Spring Program

    Assessment of the Pseudo Geostationary Lightning Mapper Products at the Spring Program and Summer Experiment

    Get PDF
    Since 2010, the de facto Geostationary Lightning Mapper (GLM) demonstration product has been the PseudoGeostationary Lightning Mapper (PGLM) product suite. Originally prepared for the Hazardous Weather Testbed's Spring Program (specifically the Experimental Warning Program) when only four groundbased lightning mapping arrays were available, the effort now spans collaborations with several institutions and eight collaborative networks. For 2013, NASA's Shortterm Prediction Research and Transition (SPoRT) Center and NOAA's National Severe Storms Laboratory have worked to collaborate with each network to obtain data in realtime. This has gone into producing the SPoRT variant of the PGLM that was demonstrated in AWIPS II for the 2013 Spring Program. Alongside the PGLM products, the SPoRT / Meteorological Development Laboratory's total lightning tracking tool also was evaluated to assess not just another visualization of future GLM data but how to best extract more information while in the operational environment. Specifically, this tool addressed the leading request by forecasters during evaluations; provide a time series trend of total lightning in realtime. In addition to the Spring Program, SPoRT is providing the PGLM "mosaic" to the Aviation Weather Center (AWC) and Storm Prediction Center. This is the same as what is used at the Hazardous Weather Testbed, but combines all available networks into one display for use at the national centers. This year, the mosaic was evaluated during the AWC's Summer Experiment. An important distinction between this and the Spring Program is that the Summer Experiment focuses on the national center perspective and not at the local forecast office level. Specifically, the Summer Experiment focuses on aviation needs and concerns and brings together operational forecaster, developers, and FAA representatives. This presentation will focus on the evaluation of SPoRT's pseudoGLM products in these separate test beds. The emphasis will be on how future GLM observations can support operations at both the local and national scale and how the PGLM was used in combination with other lightning data sets. Evaluations for the PGLM were quite favorable with forecasters appreciating the high temporal resolution, the ability to look for rapid increases in lightning activity ahead of severe weather, as well as situational awareness for where convection is firing and for flight routing
    • …
    corecore